ТРТ
AI Tech Lead
- ML
- AI engineering
- GCP
- Generative AI
- LLM
- PyTorch
- pandas
- CatBoost
- Transformer Architecture
- Hugging Face
- Google Kubernetes Engine
- Docker
- Google Cloud Build
- Python
- SQL
- BigQuery
- DBT
- Английский — B2 — Средне-продвинутый
Stealth-mode AI-powered Cloud-Native Health-Tech company is looking for a great, long-term, True Senior AI Tech Lead.
It’s not vaporware, their platform supports US Physician Networks (IPAs) by enabling Smarter, Risk-Adjusted, and more Predictive Care that improves real patient outcomes.
You will join an international team of first-class professionals who are passionate about creating products that improve the quality of medical services.
Target Stack:
Core Infrastructure (GCP Services)
-
Google Cloud Platform (GCP)
-
Google Kubernetes Engine (GKE)
-
BigQuery
-
Cloud Composer (Airflow, DBT)
-
Dataproc Serverless (PySpark, SparkML, PyTorch)
-
Bigtable
-
Spanner
-
Pub/Sub
Development & Deployment
-
Python (SciPy, Pandas, pytest, FastAPI)
-
Git (GitHub)
-
Google Cloud Build
-
Terraform
-
SonarSource
AI & Advanced Analytics
-
Vertex AI
-
LLMs and GenAI
-
Agent Development Kit (ADK)
Collaboration & Productivity
-
GSuite
-
LucidChart
-
Slack
-
Jira
NOTE: Similar Cloud-Native Experience is always an option.
Required Experience:
AI & Leadership
-
Seven or more (7+) years of Experience in Applied ML and AI engineering, including three or more (3+) years in a Technical Leadership role.
-
Proven track record of Leading ML initiatives; from R&D and Prototyping to Shipment, Deployment, and Productivization.
-
Strong Communication and Mentoring skills across Technical and Business Domains.
-
Upper-Intermediate English or higher; ability to present work and lead discussions with US-based teammates, customers, and stakeholders.
Cloud-Native & GCP
-
Cloud-Native Experience – at least three or more (3+) years – is required. Preferably, GCP. The highly-proficient [in] GCP candidates will always be prioritized over Azure, AWS, and other Cloud Platforms.
-
We don’t – at all – consider Legacy-only Big Data Experts. Meaning, it’s not enough to know outdated technologies, such as Teradata, Hadoop, Spark over Hadoop, etc.
-
This role requires working in a Unix-like Development Environment (e.g., macOS, Linux).
Engineering & Fundamentals
-
Deep knowledge of Fundamentals, such as Mathematics, Statistics, Machine Learning, Algorithms and Data Structures, etc, is required.
-
Cloud-Native (GCP) is always prioritized higher than self-hosted, on-premise, or homemade over Virtual Machines solutions. There are exceptions, such as we’re keenly trying to avoid Fully Serverless (Cloud Functions or Cloud Run over Pub/Sub or GCS) solutions.
-
Familiarity with Managed AI (e.g., Vertex AI) is a strong advantage.
-
Experience with Generative AI and LLMs, such as OpenAI, Gemini, Claude, Seedream, GPT Image, Veo3, Sora, is required.
-
Experience with Industry Standards, i.e., PyTorch, Pandas, XGBoost, LightGBM, CatBoost, Temporal Models, Classification, Transformer Architecture, SOTA Models and the Hugging Face Ecosystem.
-
Strong Productivization skills are required - the ability to take ML and LLM solutions beyond prototypes and into real, production environments.
-
Ability to adhere to an Iterative Development and Shipment of MVPs is required at the same time. It’s not possible to work in a Waterfall-like manner.
-
Proficiency with MLOps and DevOps Solutions, such as Google Kubernetes Engine, Docker, Google Cloud Build. Other examples are MLFlow and ClearML, Feature Storing, and Grafana.
-
Strong knowledge of Python and SQL. The focus is on writing Pythonic Solutions and a Style Guide-compliant SQL over BigQuery. SonarSource software is a ready-to-use helper. It’s definitely possible to write some bits in Go or Scala, where those PLs are really applicable, though the default PL is Python.
-
Strong knowledge of Data Architecture and DBs Internals, including DDL, Clustering, Partitioning, Query Optimization, etc.
-
Lakehouse-first Data Engineering (BigQuery, Cloud Composer, DBT) and Decoupled Distributed Data Processing are always prioritized higher than running Imperative Solutions over GKE or Coupled Massively Parallel Processing Compute.
-
Imperative Code Solutions – including Classical Algorithms and Data Structures –, implemented over Dataflow or Spark are expected to come up only when the Lakehouse-first Approach isn’t applicable or is too costly.
-
There are many other Experience Advantages candidates may have, e.g., Kafka, Apache Beam (Dataflow) Streaming, Spark Streaming, Python’s asyncio, Data and Model Versioning, Terraforms, etc.
Responsibilities:
-
Leading and Mentoring a multidisciplinary AI team of Data Scientists, ML Engineers, Data Analysts, etc. A Tech Product Manager will be assisting with the day-to-day work.
-
Leading R&D initiatives and Productivization.
-
Assisting with Architectural and Engineering decisions. Assisting with choices of Tech Standards, Code Quality, and MLOps Best Practices.
-
Ensuring Scalability, Reliability, and Alignment of the AI Infrastructure with GCP. Meaning, application of sensible Cloud-Native technologies, such as BigQuery, Vertex AI, Cloud Composer, etc; instead of writing self-hosted homemade solutions running on Virtual Machines.
-
Overseeing Engineering of Classical ML, Agentic and GenAI products, including:
-
Disease Prediction and Patients Scoring over Structured and Unstructured Data
-
Financial Forecasts
-
Time-Series Big Data Anomaly Detection Systems
-
Agentic and Generative Tools for Healthcare operations
-
LLM-powered Summarization, Insights Extraction, Data Analysis
-
Helping with the Team Growth, Hiring, and Continuous Learning culture.
-
Gathering and Translating Clinical and Business Requirements to robust AI Solutions. A Tech Product Manager and Medical Experts will be assisting with the job.
Location and timezone:
-
We are focused on hiring in time zones overlapping with the US (Portugal, Spain) or Western Europe
What about offer?
-
Fully remote work.
-
Interesting projects to work on.
-
Opportunity to work with international team of first-class professionals.
-
Unlimited PTO.
-
Corporate hardware.
-
Relocation assistance based on business needs.
-
Team Building events.
Компания, занимающаяся разработкой облачных технологий для здравоохранения на базе искусственного интеллекта, ищет талантливого Senior AI Tech Lead для долгосрочного сотрудничества.
Требуемый опыт:
-
Более 7 лет опыта в области прикладного машинного обучения и инженерии ИИ, в том числе более 3 лет в роли технического руководителя.
-
Требуется опыт работы с Cloud-Native — не менее трех (3+) лет. Предпочтительно с GCP.
-
Эта должность требует работы в Unix-подобной среде разработки.
-
Глубокое знание фундаментальных дисциплин, таких как математика, статистика, машинное обучение, алгоритмы и структуры данных и т. д.
-
Облачные решения (GCP) всегда имеют приоритет перед самохостинговыми, локальными или самодельными решениями на базе виртуальных машин.
-
Знание управляемого искусственного интеллекта (например, Vertex AI) является большим преимуществом.
-
Опыт работы с генеративным ИИ и LLM, такими как OpenAI, Gemini, Claude, Seedream, GPT Image, Veo3, Sora.
-
Опыт работы с отраслевыми стандартами, т. е. PyTorch, Pandas, XGBoost, LightGBM, CatBoost, временными моделями, классификацией, архитектурой трансформеров, моделями SOTA и экосистемой Hugging Face.
-
Владение решениями MLOps и DevOps, такими как Google Kubernetes Engine, Docker, Google Cloud Build.
-
Хорошее знание Python и SQL.
-
Глубокие знания в области архитектуры данных и внутреннего устройства баз данных, включая DDL, кластеризацию, разбиение на разделы, оптимизацию запросов и т. д.