ТРТ

AI Tech Lead

Не указана
  • Португалия
  • Полная занятость
  • Удаленная работа
  • Более 6 лет
  • ML
  • AI engineering
  • GCP
  • Generative AI
  • LLM
  • PyTorch
  • pandas
  • CatBoost
  • Transformer Architecture
  • Hugging Face
  • Google Kubernetes Engine
  • Docker
  • Google Cloud Build
  • Python
  • SQL
  • BigQuery
  • DBT
  • Английский — B2 — Средне-продвинутый

Stealth-mode AI-powered Cloud-Native Health-Tech company is looking for a great, long-term, True Senior AI Tech Lead.

It’s not vaporware, their platform supports US Physician Networks (IPAs) by enabling Smarter, Risk-Adjusted, and more Predictive Care that improves real patient outcomes.

You will join an international team of first-class professionals who are passionate about creating products that improve the quality of medical services.

Target Stack:

Core Infrastructure (GCP Services)

  • Google Cloud Platform (GCP)

  • Google Kubernetes Engine (GKE)

  • BigQuery

  • Cloud Composer (Airflow, DBT)

  • Dataproc Serverless (PySpark, SparkML, PyTorch)

  • Bigtable

  • Spanner

  • Pub/Sub

Development & Deployment

  • Python (SciPy, Pandas, pytest, FastAPI)

  • Git (GitHub)

  • Google Cloud Build

  • Terraform

  • SonarSource

AI & Advanced Analytics

  • Vertex AI

  • LLMs and GenAI

  • Agent Development Kit (ADK)

Collaboration & Productivity

  • GSuite

  • LucidChart

  • Slack

  • Jira

NOTE: Similar Cloud-Native Experience is always an option.

Required Experience:

AI & Leadership

  • Seven or more (7+) years of Experience in Applied ML and AI engineering, including three or more (3+) years in a Technical Leadership role.

  • Proven track record of Leading ML initiatives; from R&D and Prototyping to Shipment, Deployment, and Productivization.

  • Strong Communication and Mentoring skills across Technical and Business Domains.

  • Upper-Intermediate English or higher; ability to present work and lead discussions with US-based teammates, customers, and stakeholders.

Cloud-Native & GCP

  • Cloud-Native Experience – at least three or more (3+) years – is required. Preferably, GCP. The highly-proficient [in] GCP candidates will always be prioritized over Azure, AWS, and other Cloud Platforms.

  • We don’t – at all – consider Legacy-only Big Data Experts. Meaning, it’s not enough to know outdated technologies, such as Teradata, Hadoop, Spark over Hadoop, etc.

  • This role requires working in a Unix-like Development Environment (e.g., macOS, Linux).

Engineering & Fundamentals

  • Deep knowledge of Fundamentals, such as Mathematics, Statistics, Machine Learning, Algorithms and Data Structures, etc, is required.

  • Cloud-Native (GCP) is always prioritized higher than self-hosted, on-premise, or homemade over Virtual Machines solutions. There are exceptions, such as we’re keenly trying to avoid Fully Serverless (Cloud Functions or Cloud Run over Pub/Sub or GCS) solutions.

  • Familiarity with Managed AI (e.g., Vertex AI) is a strong advantage.

  • Experience with Generative AI and LLMs, such as OpenAI, Gemini, Claude, Seedream, GPT Image, Veo3, Sora, is required.

  • Experience with Industry Standards, i.e., PyTorch, Pandas, XGBoost, LightGBM, CatBoost, Temporal Models, Classification, Transformer Architecture, SOTA Models and the Hugging Face Ecosystem.

  • Strong Productivization skills are required - the ability to take ML and LLM solutions beyond prototypes and into real, production environments.

  • Ability to adhere to an Iterative Development and Shipment of MVPs is required at the same time. It’s not possible to work in a Waterfall-like manner.

  • Proficiency with MLOps and DevOps Solutions, such as Google Kubernetes Engine, Docker, Google Cloud Build. Other examples are MLFlow and ClearML, Feature Storing, and Grafana.

  • Strong knowledge of Python and SQL. The focus is on writing Pythonic Solutions and a Style Guide-compliant SQL over BigQuery. SonarSource software is a ready-to-use helper. It’s definitely possible to write some bits in Go or Scala, where those PLs are really applicable, though the default PL is Python.

  • Strong knowledge of Data Architecture and DBs Internals, including DDL, Clustering, Partitioning, Query Optimization, etc.

  • Lakehouse-first Data Engineering (BigQuery, Cloud Composer, DBT) and Decoupled Distributed Data Processing are always prioritized higher than running Imperative Solutions over GKE or Coupled Massively Parallel Processing Compute.

  • Imperative Code Solutions – including Classical Algorithms and Data Structures –, implemented over Dataflow or Spark are expected to come up only when the Lakehouse-first Approach isn’t applicable or is too costly.

  • There are many other Experience Advantages candidates may have, e.g., Kafka, Apache Beam (Dataflow) Streaming, Spark Streaming, Python’s asyncio, Data and Model Versioning, Terraforms, etc.

Responsibilities:

  • Leading and Mentoring a multidisciplinary AI team of Data Scientists, ML Engineers, Data Analysts, etc. A Tech Product Manager will be assisting with the day-to-day work.

  • Leading R&D initiatives and Productivization.

  • Assisting with Architectural and Engineering decisions. Assisting with choices of Tech Standards, Code Quality, and MLOps Best Practices.

  • Ensuring Scalability, Reliability, and Alignment of the AI Infrastructure with GCP. Meaning, application of sensible Cloud-Native technologies, such as BigQuery, Vertex AI, Cloud Composer, etc; instead of writing self-hosted homemade solutions running on Virtual Machines.

  • Overseeing Engineering of Classical ML, Agentic and GenAI products, including:

  • Disease Prediction and Patients Scoring over Structured and Unstructured Data

  • Financial Forecasts

  • Time-Series Big Data Anomaly Detection Systems

  • Agentic and Generative Tools for Healthcare operations

  • LLM-powered Summarization, Insights Extraction, Data Analysis

  • Helping with the Team Growth, Hiring, and Continuous Learning culture.

  • Gathering and Translating Clinical and Business Requirements to robust AI Solutions. A Tech Product Manager and Medical Experts will be assisting with the job.

Location and timezone:

  • We are focused on hiring in time zones overlapping with the US (Portugal, Spain) or Western Europe

What about offer?

  • Fully remote work.

  • Interesting projects to work on.

  • Opportunity to work with international team of first-class professionals.

  • Unlimited PTO.

  • Corporate hardware.

  • Relocation assistance based on business needs.

  • Team Building events.

Компания, занимающаяся разработкой облачных технологий для здравоохранения на базе искусственного интеллекта, ищет талантливого Senior AI Tech Lead для долгосрочного сотрудничества.

Требуемый опыт:

  • Более 7 лет опыта в области прикладного машинного обучения и инженерии ИИ, в том числе более 3 лет в роли технического руководителя.

  • Требуется опыт работы с Cloud-Native — не менее трех (3+) лет. Предпочтительно с GCP.

  • Эта должность требует работы в Unix-подобной среде разработки.

  • Глубокое знание фундаментальных дисциплин, таких как математика, статистика, машинное обучение, алгоритмы и структуры данных и т. д.

  • Облачные решения (GCP) всегда имеют приоритет перед самохостинговыми, локальными или самодельными решениями на базе виртуальных машин.

  • Знание управляемого искусственного интеллекта (например, Vertex AI) является большим преимуществом.

  • Опыт работы с генеративным ИИ и LLM, такими как OpenAI, Gemini, Claude, Seedream, GPT Image, Veo3, Sora.

  • Опыт работы с отраслевыми стандартами, т. е. PyTorch, Pandas, XGBoost, LightGBM, CatBoost, временными моделями, классификацией, архитектурой трансформеров, моделями SOTA и экосистемой Hugging Face.

  • Владение решениями MLOps и DevOps, такими как Google Kubernetes Engine, Docker, Google Cloud Build.

  • Хорошее знание Python и SQL.

  • Глубокие знания в области архитектуры данных и внутреннего устройства баз данных, включая DDL, кластеризацию, разбиение на разделы, оптимизацию запросов и т. д.